SHOCK COMPRESSION OF SOLIDS

Lee DAVISON and R.A. GRAHAM

Sandia Laboratories, Albuquerque, New Mexico 87185, U.S.A.

NORTH-HOLLAND PUBLISHING COMPANY – AMSTERDAM

SHOCK COMPRESSION OF SOLIDS

Lee DAVISON and R.A. GRAHAM

Sandia Laboratories, Albuquerque, New Mexico 87185, U.S.A.

Received April 1979

Contents:

1.	Introduction	257	4.2. Piezoelectrics	318
	1.1. Guide to the review literature	259	4.3. Ferroelectrics	327
2.	Background	261	4.4. Normal dielectrics	332
	2.1. Kinematical and dynamical relations	262	4.5. Shock-induced polarization	333
	2.2. The Hugoniot curve	265	4.6. Shock-induced conduction	336
	2.3. Experimental methods	269	4.7. Dielectric relaxation	341
3.	Mechanical and structural behavior	271	4.8. Shock demagnetization	342
	3.1. Elastic solids	. 271	4.9. Semiconductors	346
	3.2. Hydrodynamic approximation to the behavior		4.10. Conductivity of metals	350
	of solids	275	4.11. Thermoelectric junctions	353
	3.3. Plastic and visoplastic solids	290	5. Optical properties	354
	3.4. Heterogeneous yielding and reduction of shear		5.1. Index of refraction, photoelasticity	355
	strength	299	5.2. Shock-induced luminescence	358
	3.5. Spall fracture	303	5.3. Optical absorption	358
	3.6. Residual metallurgical effects of shock loading	308	5.4. Optical examination of recovered samples	359
	3.7. Material synthesis	312	6. Closing remarks	360
4.	Electrical and magnetic properties	316	References	362
	4.1. General considerations	316	Index of frequently used symbols	378

Abstract:

This review contains a brief, comprehensive, critical assessment of the status of investigations concerning the response of solids to shock compression. Mechanical, metallurgical, electrical, optical and other phenomena occurring in substances subjected to shock pressures covering the range from about 0.1 to 6000 GPa are considered. Emphasis is placed on physical interpretation of observations peculiar to the shock environment and on the relationships among observations in the various areas of investigation.

Single orders for this issue

PHYSICS REPORTS (Review Section of Physics Letters) 55, No. 4 (1979) 255-379.

Copies of this issue may be obtained at the price given below. All orders should be sent directly to the Publisher. Orders must be accompanied by check.

Single issue price Dfl. 50.00, postage included.